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This paper attempts to emulate the great study by Goldstein (1929) ‘On the 
vortex wake of a screw propeller’, by looking for a dynamical theory of how 
another type of propulsion system has evolved towards ever higher performance. 
An ‘undulatory’ mode of animal propulsion in water is rather common among 
invertebrates, and this paper offers a preliminary quantitative analysis of how a 
series of modifications of that basic undulatory mode, found in the vertebrates 
(and especially in the fishes), tends to improve speed and hydromechanical 
eficiency . 

Posterior lateral compression is the most important of these. It is studied first 
in ‘pure anguilliform ’ (eel-like) motion of fishes whose posterior cross-sections 
are laterally compressed, although maintaining their depth (while the body 
tapers) by means of long continuous dorsal and ventral fins all the way to a verti- 
cal ‘trailing edge’. Lateral motion of such a cross-section produces a large and 
immediate exchange of momentum with a considerable ‘virtual mass’ of water 
near it. 

In  Q 2, ‘elongated-body theory’ (an extended version of inviscid slender-body 
theory) is developed in detail for pure anguilliform motion and subjected to 
several careful checks and critical studies. Provided that longitudinal variation 
of cross-sectional properties is slow on a scale of the cross-sectional depth s 
(say, if the wavelength of significant harmonic components of that variation 
exceeds 59), the basic approach is applicable and lateral water momentum per 
unit length is closely proportional to the square of the local cross-section depth. 

The vertical trailing edge can be thought of as acting with a lateral force on the 
wake through lateral water momentum shed as the fish moves on. The fish’s 
mean rate of working is the mean product of this lateral force with the lateral 
component of trailing-edge movement, and is enhanced by the virtual-mass 
effect, which makes for good correlation between lateral movement and local 
water momentum. The mean rate of shedding of energy of lateral water motions 
into the vortex wake represents the wasted element in this mean rate of working, 
and it is from the difference of these two rates that thrust and efficiency can best 
be calculated. 

Section 3, still from the standpoint of inviscid theory, studies the effect of 
any development of discrete dorsal and ventral fins, through calculations on vor- 
tex sheets shed by fins. A multiplicity of discrete dorsal (or ventral) fins might be 
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thought to destroy the slow variation of cross-sectional properties on which 
elongated-body theory depends, but the vortex sheets filling the gaps between 
them are shown to maintain continuity rather effectively, avoiding thrust 
reduction and permitting a slight decrease in drag. 

Further advantage may accrue from a modification of such a system in which 
(while essentially anguilliform movement is retained) the anterior dorsal and 
ventral fins become the only prominent ones. Vortex sheets in the gaps between 
them and the caudal fin may largely be reabsorbed into the caudal-fin boundary 
layer, without any significant increase in wasted wake energy. The mean rate of 
working can be improved, however, because the trailing edges of the dorsal and 
ventral fins do work that is not cancelled at the caudal fin’s leading edge, as 
phase shifts destroy the correlation of that edge’s lateral movement with the 
vortex-sheet momentum reabsorbed there. 

Tentative improvements to elongated-body theory through taking into ac- 
count lateral forces of viscous origin are made in $4. These add to both the mo- 
mentumandenergyof the water’s lateral motions, but mayreduce the efficiencyof 
anguilliform motion because the extra momentum at the trailing edge, resulting 
from forces exerted by anterior sections, is badly correlated with that edge’s 
lateral movements. Adoption of the ‘carangiform’ mode, in which the ampli- 
tude of the basic undulation grows steeply from almost zero over the first half 
or even two-thirds of a fish’s length to a large value at the caudal fin, avoids this 
difficulty. 

Any movement which a fish attempts to  make, however, is liable to be accom- 
panied by ‘recoil’, that is, by extra movements of pure translation and rota- 
tion required for overall conservation of momentum and angular momentum. 
These recoil movements, a potentially serious source of thrust and efficiency loss 
in carangiform motion, are calculated in 0 4, which shows how they are minimized 
with the right distribution of total inertia (the sum of fish mass and the water’s 
virtual mass). It seems to be no coincidence that carangiform motion goes always 
with a long anterior region of high depth (possessing a substantial moment of 
total inertia) and a region of greatly reduced depth just before the caudal fin. 

The theory suggests ($5) that reduction of caudal-fin area in relation to depth 
by development of a caudal fin into a herring-like ‘pair of highly sweptback 
wings’ should reduce drag without significant loss of thrust. The same effect 
can be expected (although elongated-body theory ceases to be applicable) from 
widening of the wing pair (sweepback reduction). That line of development of the 
carangiform mode in many of the Percomorphi leads towards the lunate tail, 
a culminating point in the enhancement of speed and propulsive efficiency which 
has been reached also along some quite different lines of evolution. 

A beginning in the analysis of its advantages is made here using a ‘two- 
dimensional ’ linearized theory. Movements of any horizontal section of caudal 
fin, with yaw angle fluctuating in phase with its velocity of lateral translation, 
are studied for different positions of the yawing axis. The wasted energy in the 
wake has a sharp minimum when that axis is at the ‘ three-quarter-chord point ’, 
but rate of working increases somewhat for axis positions distal to that. Something 
like an optimum regarding efficiency, thrust and the proportion of thrust de- 
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rived from suction at  the section’s rounded leading edge is found when the yawing 
axis is along the trailing edge. 

This leads on the present over-simplified theory to the suggestion that a hydro- 
mechanically advantageous configuration has the leading edge bowed forward 
but the trailing edge straight. Finally, there is a brief discussion of possible 
future work, taking three-dimensional and non-linear effects into account, that 
might throw light on the commonness of a trailing edge that is itself slightly 
bowed forward among the fastest marine animals. 

1. Introduction 
Lighthill (1969) gave a general survey of the hydromechanics of aquatic ani- 

mal propulsion, composed with the help of zoological colleagues to be as far as 
possible equally restrained in its presuppositions of hydromechanical and of 
zoological knowledge in the reader. An important concept in that survey was the 
hydromechanical efficiency g of an animal’s propulsive flexural movements. 
This has a definition similar to that of the Froude efficiency of a propeller; in 
fact, 

where U is the mean forward velocity, P is the mean thrust required to overcome 
what viscous drag the animal would sustain for forward velocity U if it remained 
rigid and symmetrical, and E is the mean rate at which the flexural movements 
do work aginst the surrounding water. 

The survey includes a discussion of aquatic propulsion in some twenty classes 
within the animal kingdom, as well as a more extensive investigation within one 
class, that of the fishes. The most prominent method of propulsion is the undula- 
tory mode, in which a transverse wave, normally of increasing amplitude, passes 
backwards along the body from head to tail. This propulsive method, together 
with various modifications of it, has been successful for motion at  both high 
and low values of the Reynolds number, R, based on the animal’s length and 
forward velocity. Alternative methods, such as ciliary propulsion at  low R, and 
propulsion by jet reaction a t  high R, have been found more limited in scope 
and application. 

From another point of view, the survey suggests a division of modes of aquatic 
propulsion into two categories : high-efficiency and low-efficiency, with the sepa- 
ration between them occurring at around r ]  = 0.5. Essentially, this is a division 
within the undulatory mode (together with its modifications), because pro- 
pulsive modes limited to low R like ciliary propulsion seem to be necessarily of 
low 7 on such a criterion, while propulsion by the reaction of a jet of velocity 
U, has a low Froude efficiency if U’ is a substantial multiple of U ,  as seems gener- 
ally to be found in aquatic animals. 

Even within the field of undulatory propulsion at relatively high R, a distinc- 
tion between ‘good hydromechanical shapes’ with high r ]  and ‘bad’ ones with 
low r] was already made in the survey. Typical ‘bad hydromechanical shapes’ 
for undulatory propulsion at high R include those with roughly circular cross- 
sections (like most terrestrial snakes) while probably for low to moderate R 
(say < lo3) all shapes are in this sense ‘bad’. 

g = UHIE, (1) 
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Some excellent theoretical studies of the undulatory mode of propulsion in 
bad hydromechanical shapes have been made, notably by Taylor (1952) and by 
Gray & Hancock (1955). Lighthill (1969, $13) summarizes these in an approxi- 
mate, simplified form. Their essential assumption is that the instantaneous force 
between the water and a section of the animal’s body is the same as when that 
section moves steadily through the water at the same relative vector velocity. 
This assumption is particularly good a t  low R, when viscous forces dominate over 
inertia. 

It is often assumed that this ‘quasi-static’ theory of undulatory propulsion 
is equally good at high R. This, however, is not necessarily the case, since it 
neglects those additional forces required in unsteady motion to accelerate water 
close to the body section, the mass of water which effectively must be acceler- 
ated being that usually described as the ‘virtual mass’. Actually, the ‘good 
hydromechanical shapes’ seem to be precisely those which are able to improve 
greatly their propulsive efficiency 7 by utilizing this virtual-mass effect. 

For ‘elongated’ animals (those whose length very greatly exceeds their other 
dimensions) Lighthill (1  969)’ using theoretical ideas developed by Lighthill 
(1960), showed that it is the animals (almost exclusively vertebrates) that have 
developed transverse compression at the posterior end which can use the virtual- 
mass effect to  improve propulsive efficiency. ‘ Compression’ here means the 
flattening of the cross-section into a posterior edge or ‘trailing edge’, and ‘trans- 
verse compression ’ signifies compression occurring in that transverse direction in 
which are made the undulatory displacements that are propagated backwards 
as the propulsive wave. It is of course lateral (side-to-side) undulations that 
typical aquatic vertebrates, including most fishes, amphibia and reptiles, use 
for propulsion, and the characteristic lateral compression at  the posterior end of 
many of these improves hydromechanical efficiency, but, where undulations are 
dorso-ventral (that is, vertical) as in cetacean mammals, dorso-ventral posterior 
compression is required. 

Posterior transverse compression is important because it permits the virtual 
mass for the transverse motions of the body section in the water to have a sub- 
stantial value even at the posterior end, without that very large hydromechanical 
resistance that would be associated with any blunt backward-facing base. The 
propulsive benefits of such a substantial trailing-edge virtual mass are given a 
rather simple mechanical interpretation in $ 4  of Lighthill (1969), but the point 
is so important that it must be further developed in the present paper. In  par- 
ticular, those other conditions besides transverse compression which must be 
satisfied, essentially by the form of the undulatory mode itself in various types 
of animal, require further study. 

Characteristic propulsive modes in the great majority of fishes (for some of the 
principal exceptions see Lighthill (1969, $3 10 and 11)) are broadly divided into 
two classes : anguilliform and oarangiform. Fishes using the anguilliform mode 
have the whole body flexible, and the propulsive wave travelling from head to 
tail has an amplitude which, although increasing posteriorly, is significant all 
along the fish’s length. Carangiform propulsion, by contrast, means propulsion 
in which the amplitude of undulation becomes significant only in the posterior 
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half, or even one-third, of the length of the fish; the remainder of the fish’s body 
is relatively inflexible. 

The mechanics of anguilliform propulsion is, perhaps, simplest in those eels 
(including Anguilla from which the mode’s name is derived) and other animals 
that possess long continuous dorsal and ventral fins whose cross-sectional depth 
(taking body and both fins into account) either increases or remains substantially 
constant all the way to the (vertical) trailing edge. It is with this group of ani- 
mals that theoretical study of anguilliform propulsion begins in $ 2  below. As 
elsewhere in this paper, the exposition is confined to cases of only moderate 
amplitude of undulation, permitting the simplification of Lighthill (1960, 1969) 
which considers the only significant relative motions of different parts of the fish 
to be in the lateral direction. Not only the mean forces produced by the undula- 
tions but also fluctuations about those means are estimated, and related to the 
lateral water motions produced adjacent to the body and in the vortex wake. 

Anguilliform propulsion is additionally found, however, in several groups of 
fishes, such as catfishes (see Lighthill (1969) for a fuller enumeration), which 
possess discrete dorsal and ventral fins behind which the total cross-sectional 
depth falls to considerably reduced values before increasing again a t  the tail to 
a caudal-fin trailing edge of, approximately, the same depth again. In  these fishes 
there are vortex sheets shed already behind the dorsal and ventral fins, and the 
forces referred to above are modified in an interesting way (investigated in 6 3) 
by the free development of those vortex sheets. Mean propulsive force and its 
efficiency can, it is shown, both be increased under such circumstances, even 
though the vorticity becomes ‘bound’ once more on to the caudal fin before it is 
discarded into the wake. 

The same elongated-body theory that is suitable for studying anguilliform 
motion is useful also for studying the fundamental modification of that motion 
(with the undulations confined to a tail region) that we call carangiform. This 
propulsive mode is, in the main, investigated in $ 4, which demonstrates why the 
modification is advantageous from the point of view of propulsive efficiency.? 

This advantage, however, is not reaped unless there is a very large reduction 
of depth (that is, a ‘necking’ in lateral view) in the region, just anterior to the 
caudal fin, where the undulation amplitude has a steeply increasing gradient. 
Farther forward still the total depth of dorsal fin, body and ventral fin can, and 
indeed should, be as large as that of the trailing edge, with comparable depths 
maintained for a considerable length of fish body. Complications such as those 
mentioned above, with a vortex sheet shed from the dorsal and ventral fins, 
are absent however because those fins do not significantly take part in carangi- 
form undulation. 

The calculations in §§2-4 are limited to a fish pursuing a straight path to 
which no part of it is inclined a t  more than a moderate angle (say, less than 
30”)) so that to good approximation the important relative motions of different 
parts of the fish are in the lateral direction. One advantage of setting out calcula- 
tions on this basis in careful detail is that they can be conducted either in the form 

t The exception is a particular variant of the carangiform mode, to which elongated- 
body theory is inapplicable, and which is treated in $5. 
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of a rigorous, but complicated, perturbation expansion in which the forces acting 
between the body and the water are obtained by integrating surface pressure 
distributions, as in the appendix to Lighthill (1960), or as here by some rather 
more tentative, but simpler, considerations of bulk momentum and energy, and 
the two methods give identical results, which adds to  one’s confidence in both. 

A less restrictive analysis is desirable, however, partly because amplitudes used 
by fishes swimming at  their top speed are in reality considerably greater, with 
tails inclined by as much as 60” to the direction of motion. Furthermore, it is of 
great interest to  be able to analyse turning manczuvres. With these objects in 
mind, a new version of elongated-body theory is being prepared for future publica- 
tion, based on similar considerations of bulk momentum and energy to those 
whose reliability is verified here, but using far less restrictive geometrical assump- 
tions. 

The crude idea expounded so far, that for the ‘bad hydromechanical shapes’ 
quasi-static values of resistance to the motion of body sections may properly be 
used, as in Taylor (1952) and Gray & Hancock (1955), while for ‘good hydro- 
mechanical shapes ’ the virtual-mass effects of elongated-body theory dominate 
and resistance forces are negligible by comparison, is obviously exaggerated. It 
would be most desirable to work out a theory combining the two effects. Only a 
beginning is here made on this problem; see especially $4, where an idea of Light- 
hill (1960) for effecting such a combination is pursued somewhat further. 

The last section of this paper is devoted to investigations arising from the prin- 
cipal conclusion which Lighthill (1969) draws (see especially his figure 6) : namely 
that all the fastest marine animals, and in particular a certain group of bony 
fishes that includes the tunnyfishes, a certain group of unusually fast sharks, 
and also most of the cetacean mammals, have adopted an essentially carangi- 
form mode of propulsion but with tails greatly modified along essentially identical 
lines. These are high-aspect-ratio tails of crescent-moon shape, and such a tail is 
often called ‘lunate’ whether it is a vertical fish caudal fin or a horizontal 
cetacean tail-fluke. Lighthill gives reasons for supposing that these fast animals 
from very different lines of evolution have ‘converged’ upon the h a t e  tail (see 
also Kramer 1960, figure 18) primarily because it possesses hydromechanical 
advantage, and indicates ways in which its hydromechanics may be analysed. 

It is impossible to use elongated-body theory to study lunate-tail hydro- 
mechanics, because elongated-body theory assumes that the water is set into 
motion by body actions that, essentially, are distributed along the direction of 
motion, so that each vertical slice of water perpendicular to that direction is 
influenced primarily by body actions close to the slice. By contrast, the action of 
the propulsive lunate tail is spread out at right angles to the direction of motion; 
vertically in the case of the fishes. The large vertical extent of the fish’s tail makes 
the assumptions of elongated-body theory untenable, because changes in the 
body action on neighbouring water slices perpendicular to the direction of motion 
are altogether too abrupt for their influences to be regarded as acting indepen- 
dently. 

On the other hand, the action of the lunate vertical fin’s lateral motion on 
different horizontal slices of water is far more gradually varying, and can more 



Aquatic animal propulsion of high hydromechunical eficiency 27 1 

reasonably be regarded as mutually independent to a first approximation. This 
suggests treating the lunate tail by the two-dimensional theory of oscillating 
aerofoils. Lighthill (1969, $88 and 9) proposes as a first approximation this 
method, taking into account only the cross-stream (in the case of fishes, vertical) 
components of wake vorticity, although he suggests as a more accurate (but more 
difficult) method of calculation a ‘lifting-line’ theory that would also take the 
streamwise components into account. The latter theory would give a lower, more 
accurate, estimate of efficiency through not ignoring parts of the wake energy 
associated with the streamwise vorticity. 

It seems clear that, if indeed two-dimensional oscillating-aerofoil theory is of 
any value as afirst approximation in fish hydrodynamics, then it is in this applica- 
tion to lunate-tail propulsion. By contrast, any attempt to study propulsion in 
the more normal elongated fishes by investigating an ‘analogous two-dimensional 
fish ’ cannot give answers that are even approximately reliable because the basic 
assumption of two-dimensional theory, that body actions are spread out at 
right angles to the direction of motion, is the complete opposite of the truth for 
an elongated fish. Accordingly, the values of an aerofoil frequency parameter 
wc/U (based on radian frequency w and forward speed U )  that are relevant to 
fish propulsion must involve a chord c equal not to the fish length 1 but to the 
lunate tail’s dimension in the direction of motion. Such values of oc/U are typi- 
cally less than 1, even though wZ/U is normally around 10. 

A general characteristic of the carangiform mode (Lighthill 1969, $5) is that the 
oscillations of the caudal fin’s angle of attack and lateral velocity are in phase 
with one another. Accordingly, Lighthill made lunate-tail calculations, of which 
he gave the results in his figure 9, based on assuming that the postulated two- 
dimensional aerofoil sideslips with oscillating velocity W COB wt and yaws with 
the in-phase oscillating angle of attack (BW/U)  COB wt. In  these calculations the 
axis of the yawing oscillation was taken for simplicity as the central (or ‘half- 
chord’) axis of the aerofoil; the parameter B was described as a ‘proportional 
feathering ’. There is no thrust when 8 = 1, but although thrust increases as B falls 
away from 1 the fin generates what thrust there is with greatest efficiency if 
8 is not too far below 1. When B falls to zero, efficiency is reduced (even on this 
two-dimensional theory, neglecting streamwise vorticity, it is down to 0.65 for 
wc/U = 1) but thrust itself is then at  a maximum. 

This case 6 = 0 is one of pure sideslip without yawing, so that none of the 
thrust can come from any difference of pressure between the two sides of the fin. 
Under these circumstances (when actually thrust is greatest though it is not 
generated with great efficiency), the whole thrust comes from leading-edge 
suction; that is, from the action on the rounded leading edge of the reduced 
pressure in the water swirling round it. When 8 is non-zero, not all but a large 
part of the thrust comes from leading-edge suction, and to realize it a bluntly 
rounded leading edge, such as is indeed found in all the animals with lunate tails, 
is necessary. 

In $ 5  below, the calculation just described is repeated with a more general 
position of the yawing axis. The dependence of efficiency on this position is pre- 
dicted as unexpectedly sensitive. For given amplitudes the wasted wake energy 
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has a minimum when the axis is at the three-quarter-chord point (tha.t is, three 
times as far from the leading edge as from the trailing edge). Rate of working 
increases somewhat for axis positions distal to that point, and an optimum for 
both thrust and efficiency places the axis very close to the trailing edge. 

This new result seems to have definite relevance to the question of why the 
h a t e  tail should be hydromechanically efficient. If a caudal fin were yawing 
as a whole about a single axis, and if two-dimensional theory could be applied 
to each section, we could infer that good thrust with good efficiency would best 
be obtained if the trailing edge ran straight along the axis of yaw. For a tapered 
fin shape this would mean that the trailing edge was straight although the 
leading edge was considerably bowed forward. This degree of departure from 
‘straight wing’ conditions (when the leading edge would be bowed forward 
but the trailing edge would be bowed backward to an equal extent) is in 
the right direction, although it does not go far enough; possibly a fully three- 
dimensional theory might explain the fact that the trailing edge is even slightly 
bowed forward. 

The most promising type of three-dimensional theory may be a sort of lifting- 
line theory in which the local flow around each cross-section is taken as a two- 
dimensional flow but with a local angle of attack influenced by the whole pattern 
of wake vorticity. The form of the two-dimensional theory as explained in $6  
has been selected to facilitate its possible use in three-dimensional calculations of 
this kind. 

In  the meantime, the general conclusion concerning the trailing edge may, 
perhaps, find application to other aspects of animal locomotion. For example, 
if the flapping of a bird’s wings were approximated on a two-dimensional theory 
as a combination of a pitching oscillation (superimposed, as in figure 7 of Lighthill 
(1969), on the uniform angle of attack required for weight support) and a heaving 
motion whose velocity oscillates in phase with the pitch angle, then the predicted 
propulsive efficiency would be greatest if the pitch axis were along the trailing 
edge. 

It will be seen that $5 2 to 5 of this paper form a sort of mathematical appendix 
to the generally non-mathematical discussion of Lighthill (1969) and of this intro- 
duction. 

2. The pure anguilliform mode of propulsion 
Fishes may be said to adopt a ‘pure’ anguilliform mode of propulsion when, 

like AnguiEla vulgaris, they possess long continuous dorsal and ventral fins whose 
cross-sectional depth (taking body and both fins into account) is maintained, 
or even increases, all the way to the posterior end; there, such taper as may 
appear in lateral view is so abrupt that to a close approximation the fish body 
may be regarded as terminating in a vertical trailing edge. Such a fish, at  its 
lower speeds of movement, often propels itself by undulations that pass only along 
the fins, but at  its higher speeds makes a close approximation to the pure anguilli- 
form mode, in which a single lateral undulation, involving the body as well as 
the fins, passes backwards from the head to the tail. This mode is analysed by 
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‘ elongated-body theory ’ (an adaptation of what is called ‘slender-body ’ theory 
in aeronautics) in the present section. 

We first set it out, as Lighthill (1960) did, in a frame of reference moving with 
the mean speed U of the fish, so that in this frame of reference the fish is making 
undulatory movements in order to remain in the same average position in a 
stream whose undisturbed velocity is U ,  directed along the x-axis. We describe 
the fish’s undulations by reference to a ‘stretched straight position’ in which the 
body is perfectly symmetrical about the vertical plane z = 0. To hold the fish 
in the stream in the stretched straight position would require a force equal to 
the viscous drag D (whose magnitude we can infer from observations of de- 
celeration when a fish of known mass glides rigidly). We investigate how,without 
any external force, the fish may perform undulations about the stretched straight 
position which maintain its mean position in the stream, so that they may be said 
to generate a net thrust P that exactly balances the drag D. 

In the stretched straight position, the cross-section of the fish at a distance x 
from the front end is called 8, by Lighthill (1960), who further supposes that, 
during undulations, the cross-section is displaced by an amount h(z,t) in the 
z-direction (in other words laterally). Lighthill (1969) used the notation W for the 
lateral velocity ah/at of a cross-section. We follow him in this, as also in the use of 

(2) w = ah/at + uah/ax, 

rather than the V of Lighthill (1960), to signify the velocity of lateral pushing of 
a vertical water slice (perpendicular to the x-axis) by the successive cross-sections 
past which it sweeps with velocity U .  

Lighthill (1969, 8 4) explained in as simple terms as possible why w is consider- 
ably smaller than W at the trailing edge if in its neighbourhood the undulation 
has developed into a travelling wave of velocity V only moderately greater than 
U and of constant amplitude. In the language of partial derivatives this is be- 
cause %/at + V7h/ax is then zero, and so equation (2) gives 

w = W ( V - U ) / V .  (3) 

It was noted that w/ W should be relatively small for good efficiency, but must not 
be too small if thrust is to be adequate to overcome the viscous drag D. 

Associated with the lateral pushing of a water slice at  velocity w is a certain 
lateral momentum in the water slice. When such pushing begins, this momentum 
rises immediately to a value mw per unit length (more strictly, that momentum 
is communicated to the water by a signal propagated at  the speed of sound, 
which may however be taken infinite in the present context), where m is the vir- 
tual mass per unit length of fish. Continued pushing will produce a certain amount 
of increase above this value, through the action of viscous forces, especially in the 
production of streamwise vorticity shed in the cross-stream flow, and this is 
investigated in 5 4, but here the momentum present without any such augmenta- 
tion is first studied. 

Elongated-body theory as developed by Lighthill (1960), assuming that rates 
of change of cross-sectional dimensions along the fish’s length are small, and that 
undulatory movements do not much distort the streamwise distribution of fish 

18 F L M  44 
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mass and are not too abruptly varying, arrives at the conclusion that for a 
particular cross-section 8, we may estimate m as the virtual mass per unit 
length (there written P A )  for an infinite rigid cylinder 0, with the same cross- 
section. This quantity is easily obtained from the complex-variable theory of two- 
dimensional irrotational flow for a variety of cross-sectional shapes relevant to 
different groups of fish. 

An interesting conclusion from such calculations is that m depends to a rough 
approximation only on the depth s of the cross-section. Indeed, if we write 

(4) 172 = 4 PP9 

0.75 

P 
0.5.- 

0.25 

- 

- 

I I I I 

where p is the water density, then the non-dimensional parameter P varies little 
from 1. It is exactly 1 for an elliptic cross-section of any eccentricity, ranging 
from the nearly circular section of the anterior portions of many eels, through the 
highly eccentric elliptical section of for example a herring, to the quite flat 
section characteristic of a trailing edge. Figure 1 shows the extent to which 
departs from 1 for some other typical cross-sections. 

Theseinclude cross-sections in which a fraction q of the total depths is occupied 
by a body whose section is a circle, or an ellipse with major axis vertical, and the 
remainder by two vertical fins (dorsal and ventral) of negligible thickness. When 
the fins are of equal depth (that is, +( 1 - a )  s each) the plain line shows that P is 
1 for p = 0 or 1 but falls to a minimum of 0.75 for q = 0.7 in the case of a circular 
body, while departing much less from 1 when the body is elliptical (dotted line). 
Results (chain-dotted line) for fins of unequal depths $( 1 - q )  s and a( 1 - q )  8, 
and also (broken line) for a single fin of depth ( 1 - q ) s ,  show that even for a 
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circular body the departure of pfrom 1 is reduced in these cases, while correspond- 
ing curves for an elliptical body (not shown) involve, as would be expected, still 
smaller departures from 1. 

The importance of confidently knowing the virtual mass per unit length m 
makes it desirable, however, to  probe further the inference from elongated- 
body theory that, at  the section #,, it is the same as for an infinite rigid cylinder 
C, with the same cross-section. How far does this need correction due to two 
facts: (i) that the fish body is flexible so that different cross-sections push the 
water with different velocities, and (ii) that its cross-section is non-uniform? 
Fairly simple answers to these questions can be obtained in the special case 
when cross-sections are circular; these answers indicate that corrections are then 
not large provided that significant harmonic components of cross-section shape 
or velocity along the fish have wavelengths h of at least 5s. 

5 10 15 

hls 
FIUURE 2. Virtual-mass coefficient p as a function of the ratio A/s of 

wavelength to depth of fish cross-section (assumed circular). 

Such answers are obtained from solutions of Laplace's equation in cylindrical 
polar co-ordinates (x, r ,  6') proportional to K,(kr) cos 6' cos kx, where k = 27rr/h. 
If, for example, a cylinder of uniform circular cross-section pushes the water in 
the direction of the axis 6' = 0 (corresponding to the x-axis in Cartesian co- 
ordinates) with a velocity varying like cos kx, these solutions allow us to calculate 
the virtual mass per unit length in the form (4) with 

( 5 )  p = K l ( d h ) / [  - ( n 4 )  G(774h)I. 

Figure 2 shows that this pis within 25 % of 1 for h > 5s. Similar calculations on the 
effect of a particular harmonic component of variation of the cross-section depth, 
under conditions of uniform pushing, show that the greatest departure of p from 
1 is then the same as equation ( 5 )  would give but further reduced by the ratio of 
the amplitude to Qs, a ratio which inherently must be less than 1. 

These indications for circular cross-sections #,, that the virtual mass is to a, 
rough approximation the same as for a rigid cylinder C, with the same cross- 
section if wavelengths of significant variations in the streamwise direction exceed 
5s, can probably be relied on also for various more flattened (that is, laterally 

18-2 
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compressed) types of cross-section. These, indeed, should be more able to 'get a 
grip on' the water near them in a way such that the lateral water motion simply 
reflects that of the local body cross-section. Therefore, since in pure anguilli- 
form motions a typical wavelength of undulation (see, for example, figure 4 of 
Lighthill 1969) is considerably more than 58, it is reasonable to treat them all by 
elongated-body theory, founded on the above approximations to virtual mass. 

The x-component of the force with which the fish acts on a water slice, per 
unit distance in the x-direction, must equal the rate of change of z-component of 
momentum of the water slice as it sweeps past the undulating fish at  velocity U. 
This is 

2 = -+ u- [m(x) w(x, t ) ] ,  (aa, :xj 
where m(x) is given by equation (4) essentially in terms of the depth ~ ( 2 )  of the 
cross-section 8, (since pis close to 1) and w(x, t )  by equation (2). In  (6), departures 
of the x-component of water-slice velocity from U can reasonably be neglected 
since they are of the second order in the undulations (being of the order of 
products of transverse velocities w with local angles of body twist out of the 
stretched straight position). 

The rate, E ,  at which the fish is doing work through its transverse movements 
with velocity ah/& exerting forces 2 per unit length, is 

ah 
at 

E = s," 2 -ax, 

and by equation (6) for 2 and equation (2) for w this can be written 

(7) 

The integrated term in (8) (last term on the right-hand side) involves a contribu- 
tion only from the posterior end x = I, where the lateral compression makes m 
non-zero; by contrast, m becomes zero at  the anterior end x = 0. 

This last term in (8) is particularly important because only through it can 
the fish exert any mean power. The first term, by contrast, is merely the time 
derivative of a fluctuating quantity so that its time mean is zero. 

Lighthill (1969) gives a simple mechanical interpretation of this important last 
term, which is Umw W in the notation he uses. Here, mw is the lateral momentum 
per unit length in the water near the trailing edge, and so Umw is the rate of 
shedding of that momentum into the vortex wake per unit time, which, effectively, 
is a lateral force with which the trailing edge acts on the wake, doing work at  a 
rate UmwW because its lateral velocity is W .  Equation (3) shows this rate of 
working to be always positive and to have a mean value simply proportional to the 
mean square of the trailing-edge lateral velocity W .  

We need to ask, however, why this simple mechanical argument yields cor- 
rectly only the mean value of the rate of working, and not the instantaneous 
value given by (8), including the first term on the right-hand side. The reason is 



Aquatic animal propulsion of high hydromechanical eficiency 277 

that the undulating fish does not do work only on the wake. Part of its rate of 
working involvesexchange of energy with water that has not yetreached the wake. 
The total energy of such water ahead of the trailing edge fluctuates up and down, 
so that its rate of change is not instantaneously zero, although it has a zero mean 
rate of change over a long time (or over a single period of oscillation). 

This interpretation of equation (8) can be verified if it is recast, using (2), as 

This equates the rate of working by the fish, minus the rate at  which it does work 
on the wake, to the rate of change of an energy integral. In  this integral the first 
term represents the energy of water motions in the y- and x-directions. In  the 
frame of reference used, however, there are also comparable fluctuations in the 
energy of water motions in the x-direction. 

Specifically, when unit mass of water makes a small change in its velocity from 
U to U + u ,  there is an energy change which to a first approximation is Uu. 
Therefore, when a large body of water moving with velocity U suffers a non- 
uniform small perturbation of velocity, the energy change is U times the change 
in the x-component of momentum. Where the water momentum per unit length 
due to the fish’s transverse motion is mw, but not exactly in the z-direction 
because the fish body is sloped at  an angle ahlax to the stretched straight position, 
there will to first approximation be an 2-component of momentum - mw ahlax 
(again per unit length), with a corresponding energy change - UmwaJl/ax which 
explains the second term inside the integral in (9). 

Here we have used an important extension of the basic idea that water momen- 
tum, due to relative motion in the z-direction with velocity w of a section 8, of fish, 
is that of a cylinder C, with the same cross-section. The extended idea is that if 
S, is sloped a t  a non-zero angle to its stretched straight position then the corre- 
sponding cylinder C, must be thought of as so sloped, with the consequence that 
the associated momentum, necessarily at right angles to the generators of the 
cylinder, is sloped back from the z-direction. This extension is fully supported 
by the arguments in favour of the virtual-mass concept given earlier. 

The rate of working E can also be expressed in terms of the thrust P (whose 
value can therefore be obtained by comparing the two expressions), if we use a 
different frame of reference; one in which the water far from the fish is a t  rest. We 
can then write 

E = UP + U [ & ~ W ~ ] , = ~  + - :tJ: (@w2) dx, (10) 

where the first term on the right is the work done by the fish in simply moving 
at velocity U in the direction of the thrust P. The second term represents the 
rate at which kinetic energy of water movements, namely imw2 per unit length 
of fish, is shed to the wake at the trailing edge. This ‘wasted’ energy was 
emphasized by Lighthill (1969, $4). The third term in (10) represents the rate of 
change of a fluctuating quantity, namely the total kinetic energy (in the new 
frame of reference) ahead of the trailing edge. 
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From (9) and (lo), by subtraction, we obtain the thrust 

P = [ m ~ ( W - $ w ) ] ~ , ~ - -  it f,’ (mw E) ax. 

Equations (9) and (10) can also be used directly to estimate the hydromechanical 
efficiency 7, given by (1) as UplE.  Using the fact that the mean value of the time 
derivative of each integral is zero, we obtain 

Provided that w and W at x = 1 are related by equation (3), this implies that 
7 = 1 - &( V -  U ) / V .  This reinforces the argument of Lighthill (1969) that good 
efficiency requires w to be considerably smaller than W (and hence V not too 
much greater than U ) ,  although for substantial thrust, as (11) shows, w must 
certainly not be too small. 

Equation ( 1  l),  however, gives not only the mean, but also the instantaneous 
value of the thrust P. This value is obtained more easily by the above subtraction 
method than by any direct physical argument. The latter is possible, however, 
and is based on the following modified form of (1 1) : 

a form which, we may note, agrees with that derived in a completely independent 
way (through integrating the distribution of surface pressures obtained by a 
careful perturbation expansion) in the appendix (see equations (A21), (A 26) 
and (A27)) to Lighthill (1960). 

To interpret (13) physically, we note that the right-hand side is the rate of 
change of the x-component of water momentum in the region anterior to a plane 
II through the trailing edge perpendicular to the x-direction. This momentum 
component changes partly due to the action of the force P between the fish 
surface and the water, and partly due to momentum transport across ll, repre- 
sented by the expression in square brackets. In  this expression, loss by convec- 
tion a t  velocity U of momentum -mwah/ax per unit length appears first. The 
second term represents a loss due to the resultant pressure force acting over the 
plane II . 

A direct physical argument to derive P is made more difficult by the fact that 
momentum transfer occurs additionally through the agency of this non-vanishing 
pressure force. That its value is Qmw2 follows most easily from the unsteady form 
of Bernoulli’s equation in a frame of reference in which the fluid velocity at large 
distances is - w in the z-direction; in this frame of reference the fish motion rela- 
tive to the water is zero at  the trailing edge. Then the quadratic termsinBernoulli’s 
equation give pressures 

+A+- ( a w y ) 2 -  ( a w 4 2 1  = p w ( a ~ z  +w) - & p [ ( a w w +  ( w a z  + W ) Y ,  (14) 

whose resultant can be expressed in terms of the total momentum mw and kinetic 
energy gmw2 per unit length in the field (a$/ay, a$/ax + w )  as 

(15) w(mw) - $mw2 = +mw2. 
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(On the other hand the -paq5lat term in the pressure gives no resultant because 
for a section symmetrical about z = 0 the potential $ is an odd function of z.) 

The presence of such a resultant pressure force +mw2 across the plane IT is 
inferred again by vorticity considerations in § 3, through consideration of how the 
x-component of momentum in the wake is changing otherwise than by the shed- 
ding of momentum from the trailing edge. Other refinements of the theory of this 
section, specially designed to throw light on evolutionary deviations from pure 
anguilliform motion, are given in both the subsequent sections. 

3. Vortex sheets shed by fins 
In  this section, we precede a discussion of vortex shedding by fins in general 

with a discussion of the form of the water flow just behind the trailing edge in 
pure anguilliform motion. This is the flow carrying those quantities of momentum 
and kinetic energy predicted in $2  as shed into the wake. It will be evident to 
certain readers, especially those with aeronautical experience, that this must take 
the form of a vortex sheet, and specifically (since we are dealing with the low- 
aspect-ratio limit) one with a distribution of vorticity corresponding to an 
‘elliptic distribution ’ of velocity potential (minimizing, per unit length of wake, 
the kinetic energy for given lateral momentum and span). 

To see how this follows from the theory of $2,  we note that when the cross- 
section 8, is located at  a vertical trailing edge the corresponding cylinder C, 
is an infinitely long, inhitesimally thin strip of depth s. The velocity potential q5 
for motion of such a strip with velocity w in the z-direction takes values 

(16) 

on the sides of strip Iy-yol < is, z z  0 respectively. Equation (16) exhibits 
already the elliptic distribution of trailing-edge velocity potential. It means that 
the vertical velocity component a$/ay changes by an amount 

(17) 

q5 = T W [ $ S 2 -  ( y -  y0)2]B 

A(a$/ay) = 2 ~ ( y - y ~ ) [ ~ s ~ - ( y - y ~ ) ~ ] - *  = -3, say, 

between the z < 0 and z > 0 sides of the trailing edge. 
Such a discontinuity in velocity is equivalent to a vortex sheet, a thin layer in 

which the x-component of vorticity takes large values, whose integral across the 
layer is 3;  or, since in reality there are boundary layers on both sides of the 
solid strip, this must actually be the integral of 6 across the two boundary layers. 
It follows that a perfectly consistent picture of the flow can be built up in which 
equation (16) represents the cross-flow around the posterior end of the fish (more 
strictly, around the boundary layers attached to its surface), whereas behind the 
trailing edge there is a free vortex sheet with the same strength E, with the same 
values (16) of the velocity potential on the two sides of it, and inducing the same 
cross-flow around it. 

This is a consistent model because (i) such continuity a t  the trailing edge 
between the upstream and downstream cross-flows means that variation in cross- 
flow is gradual there as well as around the main part of the body, which justifies 
(as in $2)  the local use of the two-dimensional form of cross-flow (that around 
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Cz); (ii) continuity in the integrated x-component of vorticity, S, at the trailing 
edge is consistent with the solenoidal character of the vorticity field and with the 
convection of vortex lines with the fluid. 

In a frame of reference in which the undisturbed fluid is at  rest, the vorticity 
shed into the wake remains unchanged in magnitude and continues to exhibit the 
same bodily motion, with velocity w in the z-direction, that is implied by the 
surface values (16) of velocity potential. At each point in the wake the local value 
of w (which is linked through equation (17) with the local value of the vortex- 
sheet strength E) is equal to the value that w had at the trailing edge when the 
trailing edge passed that point. This implies a certain non-uniformity in w along 
the wake, reflecting the variability with time in the trailing-edge value of w. 

The vorticity in the sheet is rotated about the y-direction by any variation 
of w with x, the angular velocity of rotation of vortex lines being - awlax. As this 
happens the direction of the associated momentum, mw per unit length, also 
rotates; this momentum is in a direction close to the z-direction, but the twisting 
causes x-momentum to appear in addition, at  a rate - mwawlax. The total rate 
of change of wake momentum due to this cause is 

(-mwaw/ax)dx = [$m~2],=~, (18) 
Jlrn 

since the fluid is undisturbed at infinity. Equation (18) confirms the value ob- 
tained by quite different considerations of pressure distribution in § 2 (see 
especially (15)). 

There is no special point in pursuing farther the discussion of the wake in the 
pure anguilliform motion of animals with continuous dorsal and ventral fins. 
However, considerations analogous to those just described are relevant also to 
understanding the wakes from discrete dorsal and ventral fins, with more or less 
unswept trailing edges, carried by animals performing an essentially anguilliform 
mode of undulation. In  the neighbourhood of a cross-section including such a 
fin, the velocity potential takes different values on the fin’s two sides, just as 
in (16), corresponding to  a vortex sheet of strength E = -A(&$/ay) as in (17). 
Equations (16) and (17) would only represent their values to good approxi- 
mation if the body were thin in relation to its depth; corresponding results for 
rounder bodies can, however, be calculated by complex-variable theory. 

Immediately behind the posterior edge of the fin, a vortex sheet of the same 
strength E must be found, for exactly the reasons described above. In a frame of 
reference in which the undisturbed water is at  rest, this vortex-sheet strength 
remains unchanging, and has at any point a value proportional to the value of w 
at the fin’s posterior edge when the latter passed the point. In  the frame of 
reference of $2, with the undisturbed water moving at  velocity U ,  the vortex- 
sheet strength is accordingly a fixed function of t - (x/ U )  and y. 

We apply these considerations first to cod, and those other members of the 
family Gadidae in the order Anacanthini, which both dorsally and ventrally 
possess a succession of closely spaced fins, and swim with an essentially anguilli- 
form motion. Behind the anterior dorsal fin such a vortex sheet will be found, 
filling the gap between it and the second dorsal fin, and producing a far greater 
continuity in the cross-flow than would be expected from the geometry. 
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At the second dorsal fin, this vortex sheet gets mixed with the boundary 
layer. Such incident streamwise vorticity should not significantly influence the 
cross-flow, or the overall vortex-sheet strength over that fin, since those are 
uniquely determined by the local value of w. Accordingly the presence of the 
detached vortex sheet between the two fins is purely a local modification, which 
influences little the flow behind it. Other gaps between fins are similarly filled in 
by vortex sheets. 

When, as in many of the Gadidae, thesegaps aresmall (for the case of large gaps, 
see below), the dynamical effect of the vortex sheet is practically the same as if 
the dorsal fin were continuous. Actually any difference between the cross-flow 
around a body section S, including part of the vortex sheet and that which would 
be present if the vortex sheet were replaced by solid fin can only be due to: (i) 
differences between the body section shape where the vortex sheet was shed and 
at  S,; or to (ii) differences between the value of w where the vortex sheet was shed 
and at S,. If both differences (i) and (ii) were absent, then by the condition deter- 
mining the strength E of the vortex sheet it is the same vortex sheet as that 
attached to a solid fin, and hence by the uniqueness theorem of hydrodynamics 
the flows are the same. 

For small gaps both differences (i) and (ii) are small. Note that because the 
body undulation propagates at a speed T.' not very much greater than U, the value 
of w a t  S, has only a slight phase advance over that obtaining where the vortex 
sheet was shed, although there may also be a slight amplitude increase at the 
posterior section. The whole analysis applies to ventral just as much as to dorsal 
fins, and suggests in either case that with anguilliform motion a succession of 
closely spaced fins is dynamically equivalent to a long continuous fin, as stated 
by Lighthill (1969; last sentence of $4). 

In  certain fishes, by contrast, including most cat-fishes of the sub-order 
Siluroidea (order Ostariophysi), anguilliform motion is retained although there is 
a large gap between the main dorsal fin and the caudal fin (any second dorsal fin 
being relatively insignificant). Analysis of their motion must take into account 
the extensive region of vortex sheet between the dorsal and caudal fins, where 
the above-noted differences (i) and (ii) may be sufficiently important to make the 
sheet behave very differently from a solid fin. 

These differences make it necessary to define at  each body section S, a sepa- 
rate virtual mass %(x)  per unit length for the vortex sheet in the presence of the 
body section. To do this, we bear in mind that the velocity potential on the two 
sides of the vortex sheet has a certain value proportional to 

the value of w at the fin's posterior edge x = xF at the time when water now at 
S, was passing that edge. The coefficient of proportionality depends on the fish's 
cross-sectional shape at  x = xR, and is given by (16) with s = s(xF) in the special 
case of a fish thin in relation to its depth. 

We continue to define m ( x )  as the virtual mass per unit length associated with 
the motion in the z-direction of an infinite rigid cylinder C, with cross-section X,, 
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in the absence of any vortex sheet. For motion of C, with velocity w relative to the 
water, the cross-flow potential Q is that which satisfies 

a+/an = wn, on C,, Q = 0 on vortex sheet, (20) 

where n, is the z-component of a unit vector normal to  8,. The momentum of the 
flow is m(x) w per unit length. 

On the other hand, we define G(x)  as the virtual mass associated with the vortex 
sheet in the presence of a completely stationary cylinder C,. The associated 
potential 6 is that which satisfies 

@/an = 0 on C,, 6 = given on vortex sheet, (21) 

the given value being proportional to wF (see equation (19)), and the momentum 
of the flow is taken to be G ( x )  wR per unit length. The complete cross-flow, 
resulting from the motion of #,-in the presence of the vortex sheet, is defined, 
evidently, by the potential Q + $, and its momentum is therefore 

m(x) w + G ( x )  w,. (22) 

The kinetic energy of this combined flow also has a simple form, because it 
follows from Green's theorem that the two cross-flows Q and 6 are orthogonal in 
a space with kinetic energy as norm. (This requires that $+(a&/an) ds, taken over 
a contour consisting of C, and the two sides of the vortex sheet, is zero, which is 
obvious from equations (20) and (21).) Hence the kinetic energy is 

*m(x) w2+ *fi(x) w:. (23) 

The correctness of these formulas (22) and (23) is easily verified for particular 
cross-sectional shapes; thus, for a thin cross-section S, we obtain them by direct 
calculation with 

where 3 and s are the local depths of cross-section with and without the vortex 
sheet included. The formulas (24) make clear that at  x = xg (where the vortex 
sheet starts) there is no discontinuity between the values of m(x) for x < xB and 
of m(x) +fi(x) for x > xp. Actually, this is a general property for all shapes of 
body cross-section, because at x = xB we have w = wR by (19) and so by (22) the 
momentum (which as explained earlier must be continuous) is [m(x) + fi(x)] w. 

We may now apply the above results to the estimate of forces between the 
body and the water. We can no longer write the sideforce Z as equation (6), but 
instead (using (19) and (22)) as 

f i  = &"(P-s2)p, m = *7rs2p, (24) 

z =  -+u- m(x )w(x , t )+ f i ( x )w  XR,t---- (sat :x) [ ( u  x-xp)l  
= (;+ U L )  [m(x)w(x,t)]+ Uf i ' ( x )w  x,,t-- ( - xB) (25) 

provided that we remember that G jumps practically discontinuously at  x = xR 
from 0 to &(xR), so that the G'(x) in (25) includes a delta-function term 
iG(xF) 6(x - xB), while according to  the previous paragraph m'(x) includes an 
equal and opposite delta-function term. 
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Equation (7) for the rate E at which the fish is doing work through its transverse 
movements with velocity %/at, exerting forces 2 per unit length, can now be 
transformed into a form similar to (8) but with an interesting extra term. The 
first term on the right of (25 )  gives precisely the terms on the right of (8)) the 
argument being unmodified by the fact that m(x)  is discontinuous at  x = xF. 
The term in fi’(x) on the right of ( 2 5 ) )  on the other hand, contributes two terms 
to (7)) one from the delta function and one from the remainder of f i’(x),  so that 
we have 

The other method (10) of writing E,  from which the thrust P can be obtained 
by subtraction, calculates rates of change of energy in the frame of reference in 
which the undisturbed water is at rest. With the modified form (32) of the kinetic 
energy per unit length, it becomes 

The fishes with which we are here concerned have the depth of their caudal 
fin practically as large as (or larger than) that of the dorsal fin and body com- 
bined. These, then, are fishes which reabsorb the vortex sheet from the dorsal 
fin on to the caudal fin, where it gets mixed with the boundary layer, so that 
the vortex sheet finally shed from the caudal fin, being determined by that fin’s 
motion relative to the water, is practically uninfluenced by the incident sheet. 
At the trailing edge x = 1, then, no separate vortex sheet from the dorsal fin 
remains, which means that & = 0 and that the second term on the right of (27) 
takes the same form as in (10); in other words, rate of shedding of kinetic energy 
of water motions into the wake is unaffected by the vortex sheet in the gap 
between the dorsal and caudal fins. 

Admittedly, the last term on the right of (27) is modified by this vortex sheet, 
but this is still the rate of change of a fluctuating quantity and so has mean value 
zero. Hence the mean rate of wastage of energy - U P  is unaffected, according 
to the approximations here used, by the vortex sheet in the gap. This makes it 
particularly interesting to  enquire whether the total mean rate of working E 
given by (26) can be increased by the new vortex-sheet terms, because if so then 
all the extra power should be effective propulsively and the fish should achieve 
simultaneous improvements in thrust and efficiency. 

This does in fact seem to be possible, and for reasons which can be given a clear 
physical interpretation. The first term in (26) has zero mean, and the second is the 
usual Umw W term, interpreted earlier as rate of shedding of lateral momentum 
from the caudal fin times trailing-edge lateral velocity. This term can, as we know, 
have a positive mean. The third term has an identical interpretation in relation to 
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the dorsal fin and can for the same reason (essentially because V > U )  have a 
positive mean. 

We must ask therefore whether the last term in (26), in which the factor fi’(x) 
must on the average be negative as f i  decreases from the positive value f i (xa)  
to the zero value f i ( Z ) ,  must necessarily cancel the third term in mean value. 
Certainly we can interpret this last term as a negative rate of working, equal to 
minus an integral over the caudal fin’s leading edge of the product of its rate of 
picking up of lateral momentum from the vortex sheet, U (  - d f i )  wF, with the 
lateral velocity of the caudal-fin leading edge ahjat. That term is actually negative 
however only if the quantityw, ah/at occurring init possessesapositive meanvalue. 

This might be thought inevitable if V > U ,  and the mean value in question might 
be supposed greater even than the value at the dorsal-fin trailing edge, because 
of posterior increase in amplitude. This is not necessarily true, however, if there is 
a substantial phase difference between wF and ah/at at the caudal-fin leading edge. 
If this phase difference exceeds &i-, their mean product might be negative. 

In terms of a mean position x = xc of the caudal-fin leading edge, this phase 
difference has a mean value 

2n(x,-x,) v 
h ( 0 - 9 7  

where h is the wavelength of the undulation. This is because Zn(x,-x,)/A is the 
phase difference in ahjat between x = xF and xc, while the phase difference in wF, 
as (19) shows, is greater by a factor V / U  owing to vorticity convection at  a speed 
U slower than the speed V of the body undulation. With a gap (xc-xF) of at  
least half a wavelength, as is common, and typical values of U j  V around g, the 
phase difference (28) can well be +n or more. 

The above argument seems to  indicate that a large enough gap between the 
dorsal and caudal fins can improve the anguilliform mode by increasing total 
power output without any increase in the power wasted in creating a vortex wake. 
This is because momentum shedding from the dorsal fin, in phase with its lateral 
motion, causes mean power to be exerted but the rate of annihilation of that 
momentum, after it has reached the caudal fin at  a speed U less than the propa- 
gation speed V of the body undulation, is out of phase (or is even in antiphase) 
with the caudal fin’s lateral velocity, and so does not produce any balancing 
reduction in power output. 

It is conceivable that the arguments of this section might have some bearing 
on the problem of the evolution of discrete dorsal fins. Primitive jawless verte- 
brates of the class Cyclostomata, such as lampreys and hagfishes, possess con- 
tinuous dorsal fins. We have suggested that their replacement at some stage of 
fish evolution by a sequence of closely spaced discrete fins would not be disad- 
vantageous as regards thrust, while its effect ondrag reduction might be beneficial. 
Later on, reinforcement of the first dorsal fin and reduction of the others might 
be favoured by additional (phase-related) considerations of thrust advantage 
in the first place, although advantages relating to stability and control in yaw 
would soon emerge. 
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4. Mechanics of the carangiform mode 
Still later, further improvements in thrust and efficiency might result from 

gradual conversion to the carangiform mode, in which the dorsal fin no longer 
sheds a vortex sheet, playing a different, although still essential, role. Mechanical 
considerations relating to this further development must now be set out. We 
shall see that the confinement of undulations to a reduced fraction of the fish’s 
length in the neighbourhood of the caudal fin produces a gain in efficiency, which 
however might well have been cancelled out by losses due to ‘recoil’ effects if 
adoption of carangiform motion had not been accompanied by morphological 
changes tending to minimize these. 

To understand the gain, we must further refine the theoretical considerations 
of 5 2 by taking into account the fact (noted already in the paragraph following 
equation (3)) that pushing a slice of water with a body of virtual mass m gives the 
water not only an immediate access of momentum mw but also a subsequent 
gradual further increase of momentum. This is associated with the vortex-force 
on the body, which is a direct result of vorticity progressively shed by the body 
as the pushing continues. At the same time the water’s kinetic energy increases 
above the energy +mw2 of the irrotational flow (by an amount equal, as Kelvin’s 
‘minimum energy theorem’ shows, to the energy that the vortex system would 
possess with the body stationary). 

Lighthill (1960) suggested very tentatively that the theory of $ 2  could be 
extended as follows to take into account changes (if they could be estimated) in 
the water’s momentum M and kinetic energy T per unit length from the values 
mw and +mw2. Note that various checks made on equations (9) and (10) in $ 2  
suggest that the physical ideas leading directly to those equations may possibly 
be reliable in more general cases. If these are used to predict only mean values P 
and E of thrust and rate of working, they yield 

- 
E = U[MW],=z, (29) 

8- UP = U[T],&, (30) 

the differences being in each case the mean value of a rate of change of kinetic 
energy of the water motions adjacent to the body, in a frame of reference in which 
either the body, or the water respectively, is at  rest. Such kinelk energy im- 
mediately adjacent to the body in each case fluctuates periodically, so that its 
time rate of change has mean value zero. 

For mean thrust and efficiency, equations (29) and (30) imply 

P = [2Mw-T],=l = [(V/( V -  U)}IMw- T],=I, (31) 

7 = 1 - { V -  ~ ) / V ) [ ~ l , = , / [ ~ l ~ l , z 7  (32) 

equations in which equation (3) is still used to express W in terms of w. These 
suggest that parts of the momentum M at the trailing edge x = 1 which are badly 
correlated with the local pushing velocity w may be ineffective for producing 
thrust, while the associated parts of the kinetic energy T might add very con- 
siderably to the wasted energy in the vortex wake. 
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The momentum per unit length of fish, M ,  in a water slice normal to that length 
that has just reached the trailing edge, has been changed from the virtual- 
mass value mw by an amount equal to the vortex-force applied by different 
sections of the fishwhichit passed, integratedwith respect to time. Unfortunately, 
it is impossible to attempt an accurate estimate of vortex-force on the water 
slice in the exceedingly unsteady conditions while it is pushed at  varying velo- 
cities by cross-sections of varying shapes, and it is even harder to estimate the 
addition to &mw2 at the trailing edge, namely the local value of the vortex-system 
energy. However, very crude estimates suffice to make plausible the substantial 
reduction in efficiency of anguilliform motion through these effects, and the vir- 
tual disappearance of such reduction resulting from a modification into carangi- 
form motion. 

The crude estimate used here, for vortex-force per unit length due to pushing 
at  velocity w, is based on two simplifying approximations. First, a drag depend- 
ing only on w and on the cross-sectional depth s, and characteristic of steady 
motion of a long thin strip at right angles to its plane (Plachsbart 1935) is used; 
this is psw2 sgn w, where the sgn w ( + 1 if w > 0 and - 1 if w < 0) expresses that 
the drag force is in the same direction as the velocity. Secondly, an approximate 
linearization of this is used. If w varies between - wo and + wo7 then the r.m.8. 
absolute error in replacing w2 sgn w by the regression line $wow is only 0.1 lwi. 
This linearization is reasonable in the present context where drags at different 
velocities contribute linearly to the total momentum M (so that only absolute 
errors, not the relative errors which are far bigger for small w, are relevant). 

This leads to the value fpswow for vortex-force, which used together with the 
virtual-mass contribution to momentum is like representing the water reaction 
to motion of fish cross-sections as tt combination of a linear resistance and an 
inertance. The excessive momentum at the trailing edge x = 1 at time t is now 
represented as an integral with respect to time t ,  of a vortex-force proportional to 
the value at  that time of the product sw at the point x = 1 - U(t  - t l)  where the 
water slice then was : 

t 

t-ZIU 
[MI,=, = [mwl,=,+ 1 2PWO[SW(J - u ( t  - t l) ,  tl)l dt 

= [mw],=,+ $pwo[sw(x, t -  (1-x) U-l)]dx/U. (33) 

We can compare the phase relationships between M and w at x = I for different 
1: 

rates of growth of wave amplitude with x by evaluating (33) with 

where V is the wave speed relative to the body and K is small for anguilliform 
motion but large for carangiform. If m if approximately represented (see $2)  as 
fps2 this gives 

sw(x, t )  = sowo eK(z-z)cos [w(t + (1 - x) P I ) ] ,  (34) 

$pso W E  [K cos wt + w(  U-1- “-1) sin wt] 
[MI,=, = :psi wo cos ot + 7 (35) u [ K 2  + W 2 (  u-’ - v7-1)2] 

where the small contribution to the integral in (33) from the lower limit has been 
neglected. Hence 
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These results show that for small K the phase lag relative to  [w] , = I  in the part 
of [MI,=, due to momentum gain from anterior sections reduces considerably 
the value (36) of their mean product. The value of [TI,=, is not so affected. 
The part due to vortex-force can be estimated as an integral with respect to time 
t, of w times the vortex-force, giving 

Now taking swz(x, t )  = sow;e~x-~cosa[w(t+ (Z-x) 7-91, (38) 

which with s taking its maximum value so a t  the trailing edge implies K < T < 2 ~ ,  
equation (37) becomes 

(39) = eii;ps;w; + +jps,w: u-4-1. 
We conclude from (39) that the energy flow into ‘wasted’ wake motions is 

increased through vortex-force effects on body cross-sections by a factor about 
1 + 2w0/ U T S ~  Here 2w,/U is of order 1 for a wide range of fish motions, SO the 
increase in wasted energy is significant if T is of order of magnitude around sil or 
less, as in anguilliform motion. This increase is not balanced by a corresponding 
increase of thrust because for such values of T (and corresponding values of K 
down to one-half as much) (36) shows [%&I,=, to be insignificantly increased? 
essentially because the addition to [MI,=, is poorly correlated with [w],,,, 
when, as is normal, the term w(  U-l - V-1) in (36) is itself of order sol. 

For carangiform motion, on the other hand, there is a rapid increase of ampli- 
tude of motions near the caudal fin, and r ,  the relative rate of increase of sw2, 
is significantly larger than sol, generating a far smaller increase in wasted energy. 
Thus, carangiform motion represents the logical dhouement of the process begun 
by posterior lateral compression. The utilization of the virtual-mass effect (the 
water’s ‘inertance’ as opposed to its ‘resistance ’), which lateral compression 
made possible, becomes in carangiform motion almost the exclusive basis of 
thrust production. 

With the transition to carangiform motion, however, there arises a possibility 
of one other source of thrust reduction through imperfect correlation of [MI,=, 
and [ W]z=z, namely the ‘recoil’ effect (Lighthill 1960). This canlead to additional 
vortex-force, and also to a possible departure from equation (3), which states 
that W and w are perfectly in phase; such departure may decrease the rate of 
working, and reduction in the ratio of their amplitudes may at  the same time 
increase wasted energy. The derivation of that equation, and others, assumed 
that a fish can by muscular action cause a wave of lateral movement specified by 
some definite equation for h(x, t )  to pass down its body. This ignores the fact that 
the lateral movement of the fish is subject to two overriding laws of motion: 

t The estimate (36) for B( V - U ) /  VU is based on the tentative equation (29), which may 
overestimate the extent to which the effect of vortex-force wakes is modified by posterior 
motions. However, an opposite assumption, that the increase in E due t o  vortex-forces is 
exactly equal to the extra work that they locally do through pushing a t  velocity W ,  would 
replace the second term in (36), as an equation for E( V - U ) / V U ,  by # p b ’ , ~ ~ U - % - ~ ,  and the 
relative increase in work done would still be only half as much as the relative increase in 
wasted energy. 



288 M .  J .  Lighthill 

(i) the rate of change of lateral momentum of the fish must equal the total side- 
force with which the water acts on it; (ii) the rate of change of its angular mo- 
mentum about a fixed axis (which we take as the axis x = I, x = 0) must equal 
the moment of the sideforces with which the water acts on it. 

Actually the fish’s muscular contractions can only determine changes in its 
shape relative to the centre of gravity; at  the same time, translations and rota- 
tions of that shape must in general accompany those changes, and must be such 
that conditions (i) and (ii) above are satisfied. For example, anattemptto generate 
an undular lateral displacement 

h = H ( x )  cos [w(t + ( I  - x) V 4 ) ]  (40) 
will in practice generate the displacement 

h = H(x)cos[w(t+(Z-x) ~-l)]+[hl+h,(l-x)~coswt+[h,+h,(l-x)]sinwt, (41) 

where the constants h,, h,, h, and h, must be determined by applying conditions 
(i) and (ii) above and equating the coefficients of coswt and sin wt on both sides. 

We carry out this calculation, with vortex-force neglected, as follows. We first 
obtain the ‘net’ total sideforce (by ‘net’ we mean after correction for rate of 
change of the fish’s own momentum) associated with the simple motion (40), say 

where mf(x) is fish mass per unit length, and the ‘net ’ moment of sideforces about 
the line x = I, z = 0 (which is the undisturbed position of the trailing edge), 

Then we find what full expression of the form (41) would make such additions 
to both the total sideforce and the moment of sideforces that conditions (i) and 
(ii) would be satisfied. This requires the linear terms in (41) to be such that the 
integrals in (42) and (43) when calculated for them alone take the same values but 
with the sign changed. 

The calculation is done in two parts like this because different terms are 
dominant in the quantitative expressions for elements in (42) and (43) which 
arise from the sinusoidal term (40) in h and from the linear terms added to h in 
(41). For example, the sinusoidal term in carangiform motion (with H ( x )  signifi- 
cant only rather near x = I) produces a negligible fish-mass element in (42) and 
(43), because posterior lateral compression makes fish mass negligible compared 
with virtual mass of water near x = I, while corresponding virtual-mass elements, 
on the other hand, are dominated by the tendency, expressed in equation (3), for 
values of w associated with this term to be considerably smaller than correspond- 
ing values of W .  

By contrast, the linear terms in (41) produce fish-mass elements in (42) and 
(43) that involve the fish’s whole inertia, as well as its first and second moments 
about x = I. Furthermore, for these linear terms the Uajax parts in (2) and (6) are 
not nearly so important as the a/at parts for the actual frequencies w that are used 
(with wl/U of order 10). As a first crude approximation, neglecting the Uajax 
parts, those equations give 2 = m(x)  a2h/at2, so that the integrals in (42) and (43) 
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can be calculated as for a rigid body subject to no external forces whose mass 
distribution is m(x) + mf(x) per unit length. 

This first crude approximation, that the fish’s recoil to given sideforces takes 
the form of an inertial response based on the combined inertia of the fish and the 
water, is quite a useful one. In  terms of 

(44) 

where L is distance of the centre of inertia from the trailing edge, and I - MLZ 
is the moment of inertia about that centre of inertia, it gives 

(45) 

with the simple solution 

for [hl, h,, h3, h,]. The exact form of the matrix that should appear on the left- 
hand side of (45) can, actually, be calculated as 

Mw2+m(Z) Uiw MLw2-MwUio+m(Z) U2 
MLw2 + M, Uiw I d  + M, u2 1, (47) ( 

where M, = mdx is the total virtual mass (inertia of the water alone for lateral 

rigid-fish movements), and the departures of the associated exact solutions from 
those in (46) are not great. 

These considerations on recoil are potentially rather important for carangiform 
motion (with H ( x )  in (40) significant only in a short posterior portion of the fish) 
because the associated total sideforce (42) is potentially rather large. By equation 
(2), the w associated with (40) is 

w = UH’(x)cos[w(t+(Z-x) F‘-l)]-(F‘- U )  ‘CT-lH(x)wsin[w(t+(Z-x) V-l)]. (48) 

This formula emphasizes the fact that the small value of w relative to W im- 
plied by equation (3) is confined to that small region near the trailing edge where 
the amplitude H ( x )  of undulation has reached a plateau with H’(x) negligible. 
Much greater values of w are to be expected in the anterior region where H ( x )  
is rapidly increasing. 

If the virtual mass m(x)  continues in this region to take large values (such as 
were shown in 5 2 to be necessary at the trailing edge itself) then the fluid momen- 
tum m(x)  w(x, t )  rises to large peak values, and so the associated sideforces (6) 
are very big. In fact, their total integrated value 

L 

consists of two terms, one associated with fluctuations in the lateral momentum 
of water movements anterior to the trailing edge, and one associated with 

19 F L M  44 
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momentum being transferred to the wake. The latter is important in relation to 
mean rate of working (3 2), but the former constitutes a much bigger fluctuating 
sideforce when mw possesses a large peak. 

If the rapid rise of H ( x )  from 0 to its trailing-edge value N(Z) is centred around 
x = x,, where m takes values that are not depressed to  compensate for that rapid 
rise, then a rough estimate of (49) in which the integral is estimated solely by the 
contribution from the rise, taken as instantaneous, is 

1; z d x  = - ~ m ( x , )  H ( E )  w sin [w(t + ( I  - x,) ~ - 1 ) j  

-Um(Z)H(Z)(V--U) V-lwsinwt. (50)  

The two terms differ only moderately in phase, and the first term greatly 
augments the whole through its lack of the (V-U)V- l  factor. Similar 
augmentation is absent with anguilliform motion, where spatial variation of the 
cosine term in (48) greatly reduces the fluctuations in the integral (49). 

It is clear from these considerations that, unless the adoption of carangiform 
motion is accompanied by a substantial reduction of cross-section depth (with 
associated large reduction in m(x),  as (4) shows) in the neighbourhood of x = x, 
where the rapid rise in wave amplitude occurs, total sideforce will be large. Under 
those circumstances, recoil amplitudes will also be large, as equation (46) implies. 
Actually the 8, and 2, terms are the important ones there, and the moment of 
sideforce about x = Z is less important (because the effective action of the side- 
force is near x = I ) .  The lateral recoil is roughly obtained, therefore, by multiply- 

I / [H(I  - ML2) w2]. (51) 
ing (50) by 

Here I - HA2 is the moment of inertia of fish plus water around its centre of 
inertia and can be written Mk2, where k is a radius of gyration and can be expected 
to be substantially less than L .  The recoil amplitude associated with the first 
term in the total sideforce (50) would therefore be 

[(L2 + k2)/k21 [m(xr) l/MI (u/4 HV),  (52) 

which is a by no means negligible fraction of H(I)  itself. Although the U/wZ 
factor is of order lO-l, the factor (L2 + k2)/k2 can easily be of order 4 or 5, and the 
factor m(x,) Z/M is of order 1 unless m(x,) is artificially reduced. 

Substantial angular recoil (given by h, and h4) is also produced, and large 
lateral motions are generated all along the length of the fish. This wipes out the 
whole potential advantage of carangiform motion, namely its confinement of 
lateral motion to a short posterior portion. Water arriving at  the trailing edge 
has been subjected to  vortex drag, not just while it traversed such a short 
posterior portion, but for a much longer time, and has acquired additional vortex 
motions with substantial energy whose momentum is badly correlated with the 
trailing-edge velocity (both results being harmful, by (29) and (30)). 

Accordingly, it is not surprising that the adoption of carangiform motion goes 
together (Lighthill 1969) with a large reduction of depth of body and fin in the 
region of abrupt amplitude increase. Then near x = x, the virtual mass m(x)  is so 
small that there is no peak in lateral momentum, and hence no associated large 
sideforces. 
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Some sideforce still remains, however; smaller, admittedly, owing to the 
( V -  U )  7-l factor in the second term of (50), but still capable of producing 
observable recoil, since m(Z) must be large for adequate thrust production. It is 
most important, therefore, that the multiplying factor (51) is kept small, so 
that the residual sideforce does not generate too much recoil. This requires a 
large fish depth in an extensive length of the anterior part of the fish. 

To see this, suppose that the caudal-fin shape were specified (primarily by 
thrust considerations) and had total inertia M,, and consider different specifica- 
tions for the anterior portion of fish, with total inertia HA, and centre of inertia 
at x = Z - ZA, about which its moment of inertia is MA PA. Then M = MA + Mc, 
and approximately M L  = MA ZA, I = MA(& + k:). It follows that the multi- 
plying factor (51) can be written 

o-2[Hc +A!, ky(& + &)I-1. (53) 

For this to be small requires above all (since k: is necessarily a good deal smaller 
than l i )  that the part of the fish anterior to the caudal fin possess a large moment 
of inertia MA ki about its centre of inertia, taking inertia of both fish and water 
into account. 

Morphologically, this means that for efficient carangiform motion a fish needs 
a long anterior section of body with its mass so disposed that a large virtual 
mass of water is drawn into participation in its lateral movements. A degree 
of lateral compression now becomes advantageous in the anterior part of the fish. 
Additionally, a large overall depth s between dorsal and ventral fin is most valu- 
able for increasing m(x)  (in proportion, by equation (4), to s2), and the greater the 
proportion of the fish’s length in which such an increased depth is found the more 
effectively is the recoil reduced. 

Among the disadvantages of recoil, the above discussion has emphasized the 
associated vortex-force losses, but any substantial recoil would also bring other 
difficulties. At x = 1, the full equation (41) implies that 

W = 8h/8t = - w [H(Z) + h,] sin wt + oh, cos ot, (54) 

and the equations for the recoil coefficients show that h, is negative, which reduces 
the amplitude of W at the trailing edge (for given fish deformations) and so tends 
to reduce the mean thrust 

P = [m(wW- $2)1~=~. (55) 

(Specifically, equation (50) or any other estimate of (49) shows not only that 2, is 
large and negative, but also that Z,, the coefficient of cos wt, is negative; the 
moments (43) are smaller but it turns out that 2, is positive, and both results 
combine in (46) to make h, (as well as h,) negative. If the more exact matrix (47) 
is used, the phase of h, + ih, is reduced slightly, which makes h, still morenegative.) 

Next, the perfect correlation between w and W expressed by equation (3) 
is in general destroyed at  the trailing edge by recoil effects, with harmful effects 
on the mean thrust (55)  and on the efficiency (12). At x = 1, equations (2) and (41) 
give 

w = - [w( V - U )  V-lH(Z) + oh, + Uh,] sin wt + [ UH’(1) + wh, - Uh,] cos ot. (56 )  
19-2 
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In the absence of recoil it  is important that H’(1) be negligibly small in (56 )  (i.e. 
that just before the trailing edge wave amplitude cease to increase fast) so that 
w and W are well correlated. However, if H’(1) is negligible, then recoil (which 
makes both wh, and - Uh3 negative) produces a greater coefficient of cosot in 
w than in W ,  with harmful effects on the efficiency (12). Further, adoption of 
a positive value of H’(1) such that the recoil coefficients just made the coefficient 
of coswt in (56 )  small and negative (to restore the correlation with W )  might 
involve too fine an adjustment to be useful as tt practical way of getting good 
efficiency. 

To sum up, it is not surprising that fishes adopting carangiform motion possess 
features suitable for diminishing recoil-particularly, a greatly reduced depth of 
body in the region immediately anterior to the caudal fin where wave amplitude is 
increasingrapidly, and, farther forwardstill, along region characterized by greatly 
augmented depth. 

5. Two-dimensional theory of the lunate tail 
It is possible to trace, from the hydromechanical point of view, three distinct 

stages in the further development of carangiform propulsion in teleosts (bony 
fishes), aimed at  improving speed and efficiency. First, there is the ‘scooping 
out’ of a central posterior portion of the caudal fin (as in the herring Clupea) 
so that the fin becomes geometrically like a pair of highly sweptback wings. 
Provided that the posterior part of the caudal fin is moving as a rigid whole, 
the discussion at  the beginning of $ 3 above suggests that no thrust would be lost 
by this modification, because the vortex-sheet strength in the gap would be the 
same as its strength on solid parts of fin. The decline in surface area, on the other 
hand, could produce some slight reduction of resistance and associated gain in 
speed. 

Secondly, there is the reduction of sweepback of the two wing-like surfaces 
then composing the caudal fin (as in the horse-mackerel Caram). This increases 
trailing-edge span s (with important thrust benefits, by (4) and (55 ) ) ,  without 
increasing surface area, and a still greater speed improvement should result. 
Where, as with Caranx, the degree of sweepback can be varied by muscular action, 
the animal acquires a valuable extra measure of control. 

At some point during the process of decreasing sweepback, the elongated- 
body theory of $52-4 becomes inapplicable, as explained in $ 1 .  Certainly, it is 
out of the question to apply it to the third type stage of development of carangi- 
form propulsion, when the caudal fin acquires high aspect-ratio s2/S (where 
X is its surface area) and the ‘lunate’ form described in the introduction. This 
seems to be some sort of culminating point of the process of improvement of speed 
and efficiency in the teleosts, a supposition that is borne out by the fact that a 
similar lunate tail was acquired by the fastest sharks and by the cetacean mam- 
mals (as well as by Ichthyosaurus) through quite different evolutionary processes. 

Without discussing these pathways of convergent evolution further, the 
rest of this section is devoted to a first approximate theory of the carangiform 
motion of animals with lunate tails. For reasons described in $1, such a first 
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approximate theory must be a two-dimensional theory, in which the caudal fin 
(in the case of the fishes) is considered to act independently on each separate 
horizontal slice of water. This theory must overestimate efficiency because i t  
takes into account only the cross-stream elements of wake vorticity. Here it is 
set out, however, in a form designed to facilitate later extension to a lifting-line 
theory that would also take streamwise wake vorticity into account. 

In  the two-dimensional theory, the section of the caudal fin (in its symmetrical, 
undisturbed position) by a horizontal water slice y = constant is taken as 
stretching from x = -a  to x = +a (so that the origin of x is shifted to the half- 
chord position), and the undisturbed fluid flow has velocity U .  The section's 
lateral displacement is taken as 

(57) z = [h - ia(x - b) ]  eiot, 

where h and LX are real numbers signifying the amplitude of the sideslip and 
yawing motions respectively, and x = b, z = O'is the yawing axis. A 90" phase 
difference between the sideslip and yawing motions is assumed, but note that any 
other phase difference, represented by giving an imaginary part to h in (57), 
is simply equivalent to a change in b. 

The velocity potential $ eiWt of flow disturbances satisfies boundary conditions 
which, on linearization, can be applied on z = 0 and take the following form. 
For - a < x < a ,  

which equates lateral velocity of fluid to the rate of change, azlat + Uaz/ax, of the 
section's lateral displacement (57) relative to a particular water slice. Symmetry 
shows also that q5 must be an odd function of z, and this means on z = 0 that $ 
vanishes for x < - a (upstream of the leading edge). This argument fails for x > a, 
downstream of the trailing edge, where a vortex sheet must be present for the same 
reasons as were adduced in 5 3 (but in this two-dimensional flow including only 
cross-stream vorticity). Its strength is unchanging relative to the fluid, so that 
on x = 0, x > a the quantity 

is a continuous as well as an odd function of z and therefore vanishes. 
It is convenient, following Possio (1938) and also Wu (1961), to use 0 as a 

new dependent variable, particularly since it is continuous throughout the fluid 
and vanishes on z = 0 for both x < -a and x > +a. Also, it has important 
physical significance, since departures of the pressure p from its hydrostatic value 
po take the form 

(60) n -  

on linearized theory, and thus it is the continuity of pressure across the vortex 
sheet which is essentially being used. For - a < x < a, we have by (58) and (59) 

(a@/az),=, = B+Cx, where B = 2 U o a - ~ ~ ( h + i a b ) ,  C = iw2a, (61) 

an equation which relates lateral pressure gradient to lateral acceleration of a 
fluid element resulting from the fin's displacement (57). 

Solutions of V2Q = 0 satisfying (61) are easily obtained, but we must consider 
carefully what singularities can be permitted, or are necessary, so that such a 

(a$/&),=, = i(&- U ~ ) + O J L X ( X - ~ ) ,  (58) 

@ = io$+ ua$lax (59) 

p - p  - -p@eei"t 
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solution corresponds to a value of q5 satisfying the boundary conditions. As in 
many steady-oscillation problems, it is convenient to think of w as possessing a 
small negative imaginary part (which is later allowed to tend to zero), representing 
a slow build-up of the oscillation to its present level. Then equation (59) can be 
solved for q5 as 

@(xl, 2) e ~ @ ( ~ i - ~ W &  1 7  (62) 

which automatically vanishes for z = 0, x < -a  (as it should) if 0 does. 
The singularities of $ needed to represent flow near the leading and trailing edges 

are well known. Near a sharp trailing edge x = a, where the Kutta-Zhukovskii 
condition of no flow around the edge is applied, q5 has a three-halves power 
singularity (so that (g5),=ois of order (a -x)%). This means that 0, andthe pressure 

0 - 

TABLE 1. This specifies the properties of three solutions of Vz@ = 0, each 
tending to zero as x2 + z2 + 03, and each defined in terms of the behaviour of a function 
62 + i@ of 5 = z + iz, regular outside a cut from < = - a to f = +a. Here the square roots of 
(f - a)/(< + a )  and f2 - a2 mean those ‘ branches ’ which behave like 1 and 5 respectively for 
large ISl. Square roots of functions of the real variables x mean the positive square roots. 
Across the cut z = 0, 1x1 < a, Q is continuous but (D is discontinuous. At all points 

and 

a q a z  = aa /ax  

(60), have square-root singularities. The leading edge x = a, on the other hand, 
permits good hydrodynamic performance only if it is well rounded so as to permit 
flow around the edge, andthis corresponds to a square-root singularityin q5 (so that 
(q5)z=o is of order (..+a)*), and an inverse-square-root singularity in 0. (More 
accurate analysis places the singularity a short distance behind the leading edge, 
equal to half the section’s radius of curvature (Lighthill 1951)’ but the calcula- 
tions placing it at x = - a give a good approximation when overall forces are being 
calculated.) 

Those considerations specify the required solution of V20 = 0 satisfying (61) 

in terms of functions 01, Q2, and specified in table 1. Here the coefficient A 
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is arbitrary, and the term in a, must be included to allow for the expected 
singularities just referred to. 

In  order to determine A, we must require that the $ specified by (62) and (63) 
satisfies condition (58),  just as it was earlier shown to satisfy the other conditions 
on 4. By table 1, this requires, for 1x1 < a, that 

where values of a@/& equal to aR/ax have been used. The improper integrals are 
t o  be interpreted in the generalized-functions sense (Lighthill 1958), or (in 
other language) in the Abel sense as x1 -+ - m (equivalent to w having a nega- 
tive imaginary part that is allowed to tend to zero), and in the Hadamard sense 
as x1 + - a. This is because a@,,/az is the z-derivative of a function R whose limit 
as z -+ 0 includes the singular term - [(x - a)/(z+a)]) for x < -a but not for 
- a < x < a, and so the corresponding term in (64) would be correctly evaluated 
through integration by parts with the 'infinite' integrated term replaced by zero. 

It is easily verified that the part of (64) written on the second line is separately 
an identity, as could have been predicted since its left-hand side is the (a$/ax),=, 
that would correspond to (61) if the latter gave (a@/az),,, for all x, and this must 
be (58) by the way that (61) was derived. Hence the first line of (64) vanishes 
separately, and after cancelling the U-l e-iwxlUfactor this gives a single condition 
to determine A .  

When the integrals have been evaluated as Bessel functions of 

r = iu, where u = wa/U (65) 

(and r should be thought of as having a small positive real part), this condition 
becomes 

Ar[K,(r) + K,(r)] - BaK,(r) + $Ca2[K,(r) + 2r-lK1(r)] = 0. (66) 

We show the evaluation only in the (doubly improper) case of the coefficient of 
A ,  which on the substitution x1 = - a cosh u becomes 

-IOm e+cOshu(coshu- l)-ldzc = [e-rCoahucoth+u]; 

+ r Iom ecrcosh (1 + cosh u) du, (67) 

an integration by parts in which the rules mentioned above require the inte- 
grated term to be replaced by zero, while the remaining term is r[K,(r) +Kl(r ) ] .  
In  terms of the Theodorsen function (Garrick 1957), 

F ( u )  + i G ( s )  =Kl(ia)/[Ko(i~) +Kl(W)], (68) 

whose values are displayed in figure 3, equation (66) with (62) and (65) gives 

A = - U([wa(b - i a )  + i( Ua - wh)] (3 + iG) + &ma). (69) 
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The sideforce (in the z-direction) per unit span, pZeiwt say, and the yawing 
moment per unit span acting about the half-chord position x = z = 0 in the 
positive sense (that is, tending to turn the leading edge in the x-direction), 
Qeiwt  say, are given by ( 6 0 )  and ( 6 3 )  and table 1 as 

Z = 2 S a  (@),=-,,dx = 2naA+n-a2B, 
-a 

P a  

Q =  2J ( - ~ ) ( @ ) , , - , d x = n a ~ A - & r a ~ C  
-a  

From these can be deduced the mean rate of working per unit span, pg say. We use 
two principles for this: (i) rate of working in combined sideslip and yawing equals 
sideforce times rate of sideslip of centroid, plus yawing moment about centroid 
times rate of yaw; (ii) if two quantities are each expressed as the real part of 
complex exponentials, aeiwt and beiwt, their mean product is @?(a6) where W 
means real part and 6 the complex conjugate of b. 

0.6 F 0.8 1.0 

.- . , 

L -0.2 

FIGURE 3. Argand-diagram representation, adapted from Garrick (1957), of the Theodorsen 
function P+iG as a function of the frequency parameter CT = wa/U (where a = Be is the 
half-chord length of the aerofoil). 

These principles give 
- 
E = +.%[ZW( - a b  - ih) + &( - @a)], 

since (57) implies a rate of sideslip of centroid w(  - a b + i h ) e i w t  and a rate of 
yaw - waeiwt. From equations ( 7 0 ) ,  ( 7 1 )  and (72 ) ,  with ( 6 1 ) )  we obtain 

= -nawa(b+&~)L%?A+nawh3A-.1~a~Uw2a~b, ( 7 3 )  

where 4 means imaginary part. 
The mean thrust per unit span is pp, where 

H = n-a U-2 I A I + (n-aa9A - +n-a2w2a2b). ( 7 4 )  

The term in parentheses here represents the mean resultant &!%[Z( - ia)] of a 
sideforce pZeiwt given by (70) acting on a surface (57) inclined backwards at  an 
angle iaeiwt to the x-axis. An important additional thrust, however, is derived 
from the first term, representing the mean suction force acting on the rounded 
leading edge due to the fast flow around it. Instantaneously, the suction force 
takes the well-known steady-flow value obtained by Blasius's theorem (see, for 
example, Robinson & Laurmann 1956, p. 126) .  This is associated only with the 
quadratic terms - +p[aq5/8~)~ + ( a # / a ~ ) ~ ]  in the pressure (because the linear 
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term (BO), being an odd function of 2, has zero resultant), and the mean suction 
force is + ~ T I K ~ ~ ,  where K ( x  + a)-* is the asymptotic form as x 4 -a  of (a$/tJx),=,,, 
which by (59) is that of U-l@ (since $ vanishes at  x = -a ,  z = 0). Equation (74) 
follows since this K ,  by (63) and table 1, is - U-lA(2a)&. 

The rate of energy wastage per unit span, p(E - U P ) ,  is deduced from (73) and 
(74) by simple algebra, using (69), as 

E - U P  = ( UTU) [da2(b  - (wh - Ua)'] ( F  -P2  - a'). (75) 

In  this important formula all three factors are essentially positive, and the middle 
factor shows a clear minimum as a function of b when the yawing axis x = b is at  
the three-quarter-chord point b = +a. 

More arduously, the formula (75) can be derived by showing that in the 
region of the vortex wake z > a equations (62) and (63), together with a variety 
of Bessel-function identities, imply that ($),=* , = T $we-iOzlu, where 

(76) 

The parts of such a vortex wake far beyond the influence of the solid body 1x1 < a 
have mean energy +p(w/ U )  I per unit length, and such energy increases at  a 
rate &pwl&,12. Agreement of this rate of energy wastage with (75) is then proved 
by another Bessel-function identity, 

n-U[wh- Ua+iwa(b-&z)] 
h = w[K,(iv) +K,(icr)] 

I K , , ( ~ U ) + K , ( ~ C T ) ~ - ~  = ( 2 ~ ~ / 7 ~ 7 7 )  (P-P2-Gz) .  (77) 

This much more complicated method is only useful as a check. 
The efficiency 7 is still given by equation (l), although in this section both E 

and p are values per unit span, divided by the density. Hence, by (69), (73) and 
(7% 

1 - 7  = ( E -  UF) /E  
- {w2a2(b-&~)2+(wh- Ua)'} ( F - F 2 - G 2 )  
- 

{wa(b-$a) [a(b+&)P-hG-&~]+(wh- Ua) [hF+a(b+&)G]}w' 
(78) 

The numerator of (78), proportional to the rate of energy wastage, shows the 
clear minimum as a function of b where b = &a. already referred to. This minimum 
is particularly sharp for the higher values of both the frequency parameter 
cr = wu/ U and the proportional-feathering parameter UcL/oh, which Lighthill 
(1969) called 8 (and which must be expected to be less than 1 for significant 
positive thrust). 

The corresponding maximum in 7 is shifted to a value of b only slightly greater 
than &a by the behaviour of the denominator. There, the terms in square brackets 
that form the coefficients of wa(b - &z) and (oh - U a )  are both positive near 
b = +a, so that total work done increases as (b  - +a) increases. However, the first 
of these coefficients is considerably the smaller in most cases of interest and there- 
fore, when the numerator has a sharp minimum, does not allow the associated 
maximum in 7 to depart far beyond b = Ha. On the other hand, it means that 
thrust is somewhat increased for a value of b greater than =&, and this considera- 
tion may need to be balanced against considerations of efficiency. 
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These remarks are borne out by figure 4, which compares the dependence of 
thrust and efficiency on 6 and CT, calculated by this two-dimensional theory for 
four positions of the yawing axis (half-chord, three-quarter chord, full-chord or 
trailing edge, and five-quarters-chord). Of these four positions, the middle two 
permit better maintenance of good efficiency at  the higher values of the frequency 
parameter wc/U = 217 based on the ‘chord’ c = 2a (fore-and-aft dimension of fin 
section). 

b=O b=)a b=a 

3 

cT 

1 

I - 1.0 

- 0.59 

f I I 1 I 1 I I 

0 1 2 0  1 2 0  1 2 0  1 2 
wc/u w c / u  wc/ u wc/ u 

FIGURE 4. Thrust coefficient 0, and efficiency 9 predicted by two-dimensional aerofoiltheory , 
for values 0,0-2,0.4,0.6 and 0.8 of a, feathering parameter I9 = Uu/wh, plotted as a, function 
of wc/U (which is 2 ~ ) ,  for different positions 5 = b of the yaw axis (namely half-chord b = 0, 
three-quarter-chord 6 = +a, trailing-edge b = a, and a position ‘ five-quarters-chord’, 
b = ta, beyond the trailing edge). ----, part of CT for I9 = 0.6 predicted as coming from 
leading-edge suction. -.-.- , same for I9 = 0.8. 

The thrust is represented by a thrust coefficient C, equal to thrust per unit fin 

This relates thrust to the amplitude wh of the fin’s lateral motion, and the reduc- 
tion in C, as wc/U increases describes the decline in thrust from given fin move- 
ments at the lower forward velocities. 

For the larger values of 8 (say, 0.6 and 0.8) which are best for maintaining 
good efficiency, the thrust values are greater for the positions of the yawing 
axis which are farther downstream, and such positions might be tentatively 
preferred (for example, b = a preferred to  b = +a) as maintaining thrust better 
at the lower forward velocities. Some caution is needed here, however. For 
6 = 0.6, the broken line shows which part of the thrust comes from leading-edge 
suction, the remainder being due to the backwardly inclined component of side- 
force. The chain-dotted line does the samet for 0 = 0.8. (Note that for 8 = 0, by 
j In the case of the b = 0 diagrams, these are the only changes from figure 9 of Light- 

azea divided by &p(wh)2; thus, c, = p/02h2a. (79) 

hill (1969). 
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contrast, there is no inclining of the fin and ulE the thrust predicted is due to 
leading-edge suction.) 

Evidently, the increase of thrust as b increases, calculated for the larger 
values of 8 and of wc/U,  is entirely due to a steep increase in the leading-edge- 
suction component, whereas the element of backwardly inclined sideforce falls 
off, and may even become negative. When we question how it can become nega- 
tive, we soon find that it is due to the second term in parenthesis in (74), which 
arises from the sideforce (70) acquiring an imaginary part from the -iw2ab 
term in equation (61) for B. This can be thought of as a virtual-mass contribution 
to sideforce, due to rate of change of lateral momentum of water adjacent to the 
fin and swept from side to side by it, so fluid inertance plays a substantial role 
here as in elongated-body theory. The farther the yawing axis is behind the 
aerofoil centroid, the more this contribution to sideforce is negatively corre- 
lated with backward inclination of fin. 

This tendency towards a reduced thrust contribution from backwardly in- 
clined sideforce as b increases is more than made up, however, by the increased 
suction force, that is, the term in (74) proportional to \A  lz. It is the growth in the 
real part of A (see (69)) as b increases, associated with fluctuations in sideforce 
(70) out of phase with the fluctuations in angle of incidence, which increases this 
suction force. 

These considerations indicate that attempts to achieve high thrust coefficients 
C, from a two-dimensional aerofoil by choice of a yawing axis behind the trailing 
edge (such as the b = :a choice in figure 4) are probably inadvisable quite apart 
from considerations of efficiency. They depend too much on realizing a very high 
suction force at  the rounded leading edge, and if owing to separation only part of 
that force were realized the total thrust (including a negative component from 
backwardly inclined sideforce) would be very greatly reduced. Probably an 
optimum from thrust considerations as well as from efficiency considerations lies 
somewhere between b = +a and b = a, which in practice means very close to the 
trailing edge. 

This conclusion is, perhaps, relevant to why the lunate tail should be hydro- 
mechanically efficient. If a caudal fin were yawing as a whole about a single axis, 
with yaw angle in phase with its velocity of lateral translation, and if two- 
dimensional theory could be applied to each section, then good thrust with good 
efficiency would best be achieved if the axis of yaw were close to the trailing edge 
of each section. This requires that the trailing edge as a whole stretch almost 
straight along the axis of yaw. 

Tapering of the fin must accordingly take place through the leading edge 
being bowed forward. Any bowing of the trailing edge should be small by com- 
parison. We recover here the concept of a vertical trailing edge where angle of 
yaw and lateral velocity are perfectly in phase, which was a favoured idealiza- 
tion also in 3 2. 

This degree of departure from ‘straight wing’ conditions suggested as optimum 
by two-dimensional theory, with leading edge bowed forward but trailing edge 
practically straight, is in the right direction (see figure 6 of Lighthill 1969), 
although it does not go far enough; possibly a fully three-dimensional theory 
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might explain the fact that most lunate tails have also a trailing edge bowed 
forward (though not as much as the leading edge). In any case a properly worked- 
out two-dimensional theory is necessary as a preliminary to a more thorough 
three-dimensional study, using lifting-line techniques, of the advantages of a 
lunate-tail configuration. 

Further discussion of three-dimensional aspects of the flow is not here at- 
tempted, but we conclude with some remarks about the appropriateness within 
two-dimensional theory of the linearization of boundary conditions, used in 
this section as well as in the earlier sections concerned with elongated-body 
theory. Extension of elongated-body theory to large-amplitude motions seems 
feasible, as mentioned in Q 1, but the problems of carrying out such an extension 
for even a two-dimensional theory of the lunate tail appear far from straight- 
forward. 

This is not to say that linearized theory is useless for evaluating the large- 
amplitude lunate-tail motions that are actually found (Fierstine & Walters 
1968). Aerofoil characteristics a t  amplitudes relatively large, but below those 
where catastrophic stalling occurs (which fishes may be presumed to avoid), 
are often indicated reasonably well by extrapolation of small-amplitude charac- 
teristics. Nevertheless, one would like both to understand any tendency for 
thrust and efficiency to  continue to follow curves predicted by linearized theory, 
and to estimate deviations from them. 

A theory might be attempted for well-feathered oscillations of a two-dimen- 
sional aerofoil, making large displacements but combining them with such 
variations in angle of incidence that disturbances to the uniform stream of velo- 
city U could still be regarded as small. Then a pressure 

P -p0  = - p(a4lat + u a+lax) (80) 

linearly related to velocity potential (as in (59) and (60) but now with 4 not 
+eiwt as velocity potential), could still be used, and p would satisfy Laplace’s 
equation and be continuous even across the vortex wake. The normal derivative 
of p a t  all points of the aerofoil surface would be known at each instant as the 
rate of change following a fluid particle of the normal velocity specified by the 
boundary conditions. For a flat-plate aerofoil, p could then be deduced in a form 
constituting a generalization of (63), and involving one arbitrary constant A 
that now would be a general function of time. This function would have to be 
determined by specifying that the solution of equation (80) for q5, got by inte- 
grating along lines on which y, x and 2- Ut are constant, satisfied the aerofoil 
boundary condition. 

That last step, leading to the generalization of equation (66), would involve 
extremely complicated integrations, but the whole would be easier, perhaps, 
than a method which sought to calculate the velocity field induced by a sinus- 
oidal vortex wake with amplitude approaching half a wavelength (Fierstine & 
Walters 1968). Methods of this latter kind cannot be ruled out, however, in any 
future efforts at  achieving a three-dimensional non-linear theory, possibly using 
the idea (Lighthill 1969) that the lunate tail may generate a wake consisting of a 
succession of vortex rings. That ultimate development, however, would call for 
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something like the genius that Goldstein (1929) showed when he calculated the 
effect of the helicoidal vortex wake behind a propeller. 

The author acknowledges with gratitude and pleasure the benefits of having 
sat for seven years at the feet of Sydney Goldstein. 
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